

Patriot Drills 122.6 m at 1.89% Li₂O, including 8.1 m at 5.01% Li₂O, and Extends High-Grade Nova Zone, at the CV5 Pegmatite, Corvette Property, Quebec, Canada

May 16, 2023 – Vancouver, BC, Canada

May 17, 2023 – Sydney, Australia

Highlights

- Additional high-grade Zone discovered, marking interpreted western extension of the Nova Zone drill holes CV23-130, 132, 134, and 138:
 - 122.6 m at 1.89% Li₂O (126.0 m to 248.5 m), including 8.1 m at 5.01% Li₂O (CV23-138).
 - **130.3 m at 1.56% Li₂O** (164.0 m to 294.3 m), including **52.7 m at 2.45% Li₂O** (CV23-132).
 - 101.3 m at 1.44% Li₂O (123.3 m to 224.6 m), including 28.1 m at 3.00% Li₂O (CV23-134).
 - 101.2 m at 1.08% Li₂O (145.5 m to 246.7 m), including 10.1 m at 2.42% Li₂O and 4.0 m at 4.13% Li₂O (CV23-130).
- Other significant intercepts
 - 101.2 m at 1.59% Li₂O (240.3 m to 341.5 m), including 28.5 m at 4.14% Li₂O or 8.8 m of 5.20% Li₂O (CV23-141).
 - 56.3 m at 2.34% Li₂O (251.4 m to 307.6 m), including 11.1 m at 4.06% Li₂O (CV23-114).
 - 57.7 m at 1.46% Li₂O (182.0 m to 239.7 m), including 13.3 m at 2.65% Li₂O (CV23-168A).
 - 43.5 m at 1.80% Li₂O (239.5 m to 283.0 m), and 24.0 m at 2.04% Li₂O (372.9 m to 396.9 m) (CV23-127).
- A continuous **93 m interval of dominantly spodumene-bearing pegmatite in most** westerly drill hole completed to date at the CV5 Pegmatite – CV23-184 (assays pending).
- A continuous **139 m interval of dominantly spodumene-bearing pegmatite in final drill hole** of the 2023 winter program at the CV5 Pegmatite CV23-190 (assays pending).
- Core sample assay results for 27 drill holes completed during the 2023 winter drill program remain to be reported.

Patriot Battery Metals Inc.

Suite 700 - 838 W. Hastings Street, Vancouver, BC, Canada, V6C 0A6 www.patriotbatterymetals.com TSX-V: PMET / ASX: PMT / OTC: PMETF / FSE: R9GA LEGAL\63309512\1 Blair Way, Company President and CEO, comments: "The drill bit continues to deliver for us as confirmed by the strong grades and wide widths of mineralized pegmatite reported herein. With our last hole providing the longest pegmatite intersection of the winter drill program (139 m), we are certainly primed for continued success as we approach the beginning of our summer-fall drill program, scheduled to commence later this month. With core sample assays for numerous drill holes remaining to be received, the Company's geological team is steadfast focused on final validation of the CV5 Pegmatite's geological model, inclusive of all drill holes completed to date, ahead of an initial mineral resource estimate."

Patriot Battery Metals Inc. (the "Company" or "Patriot") (TSX-V: PMET) (ASX: PMT) (OTCQX: PMETF) (FSE: R9GA) is pleased to announce core assays for the next series of drill holes completed as part of the 2023 winter drill program, which recently concluded, at its wholly owned Corvette Property (the "Property"), located in the Eeyou Istchee James Bay region of Quebec. The winter phase of the 2023 drill campaign was focused on the CV5 Pegmatite, located approximately 13.5 km south of the regional and all-weather Trans-Taiga Road and powerline infrastructure.

Core assays, for the drill holes reported herein (Figure 1), cover the CV5 Pegmatite's recently defined eastward extension (see news releases dated <u>February 5</u> and <u>March 23, 2023</u>) (Figure 2), the east-central area proximal to the CV1 outcrop (Figure 2), and the recently defined westward extension (see news release dated <u>May 1, 2023</u>) (Figure 3).

The drill holes targeting the east-central area of the CV5 Pegmatite were completed during the winter program to take advantage of more practical and cost-effective ground access. These drill holes were highly successful with mineralized pegmatite intervals of **122.6 m at 1.89% Li₂O**, including **8.1 m at 5.01% Li₂O** (CV23-138), **130.3 m at 1.56% Li₂O**, including **52.7 m at 2.45%** Li₂O (CV23-132), **101.3 m at 1.44% Li₂O**, including **28.1 m at 3.00% Li₂O** (CV23-134), and **10.1 m at 2.42% Li₂O** and **4.0 m at 4.13% Li₂O** (CV23-130). These four (4) drill holes define a new high-grade zone, which is interpreted to represent a continuous 200+ m extension westward of the high-grade Nova Zone (see news release dated March 29, 2023). Drill holes CV23-181 (108 m of continuous pegmatite) and CV23-148 (95 m of continuous pegmatite) tested the connection of the zones (i.e., the area between), with assays pending for both. However, based on logged modal spodumene content, the **high-grade Nova Zone is now interpreted to extend continuously from at least drill hole CV23-132 to CV23-108, a distance of approximately 1,100 m**.

Assay results for two (2) drill holes completed over the recently discovered westward extension of the CV5 Pegmatite (see news released dated <u>May 1, 2023</u>) confirm strong lithium grades over moderate to wide intervals in this area – **38.4 m at 1.19% Li₂O, 7.8 m at 3.01% Li₂O**, and 8.8 m at 1.29% Li₂O (CV23-176), and 33.4 m at 0.87% Li₂O and **12.8 m at 1.25% Li₂O** (CV23-161).

The CV5 Pegmatite remains open along strike westwardly in this area with **the westernmost drill hole completed to date (CV23-184) returning a continuous 93 m interval of dominantly spodumene-bearing pegmatite**. Additionally, the final hole of the winter program (CV23-190), also completed in this area, returned **a continuous 139 m interval of dominantly spodumene-bearing pegmatite** – the widest pegmatite intercept of the 2023 winter program at the CV5 Pegmatite. Core sample analysis for both CV23-184 and 190 have not yet been reported. These

drill holes were also completed in opposite directions across the CV5 Pegmatite body, further attesting to the sizable blow-out (i.e., sizable width) of the pegmatite in this area (Figures 1 and 3).

The 2023 winter drill program recently concluded with a total of 89 drill holes and 32,367 m completed – drill holes CV23-105 through 190. Through the 2023 winter program, the CV5 Pegmatite has now **been traced continuously by drilling** (at approximately 50 to 150 m spacing) as a principally continuous spodumene-mineralized body **over a lateral distance of at least 3.7 km** (CV23-184 to CV23-125) **and remains open** along strike at both ends and to depth along most of its length.

Due to the continuity of the pegmatite confirmed by the 2023 winter drill program, all holes completed to date at the CV5 Pegmatite (through CV23-190) will be included in the forthcoming mineral resource estimate. The Company is targeting a July 2023 announcement and is dependent on timely receipt of all outstanding core sample assays from the laboratory, as well as final database and model validation.

The Company's summer-fall drill exploration program is scheduled to re-commence in late May at the CV5 and CV13 pegmatites. The summer-fall surface program is scheduled to begin in early June and continue through late September.

Core sample assay results for drill holes reported herein are presented in Table 1. Core assay results remain to be reported for 27 drill holes completed during the winter program, with all drill core samples having arrived at the analytical lab (SGS). Pegmatite intervals >2 m (core length) for all drill holes completed during the winter program are presented in Table 2, and drill hole attributes presented in Table 3. Tables 1, 2, and 3 will be posted to the Company's website shortly. Select core photos are presented in Figures 4 and 5.

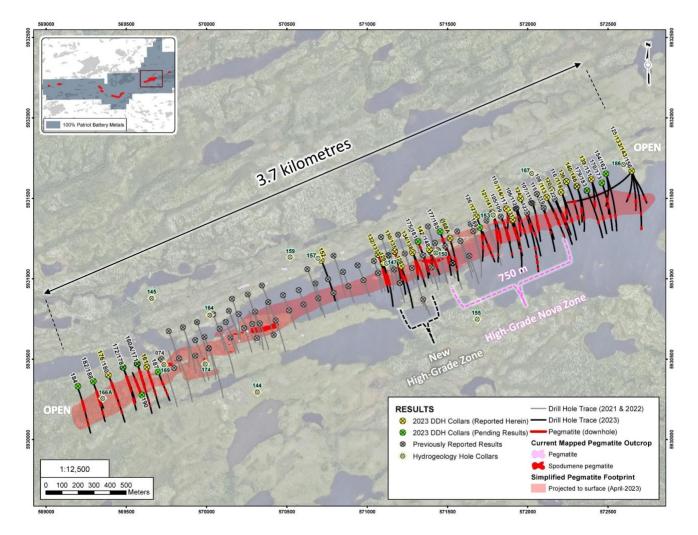


Figure 1: Drill holes completed at the CV5 Pegmatite through the 2023 winter drill program

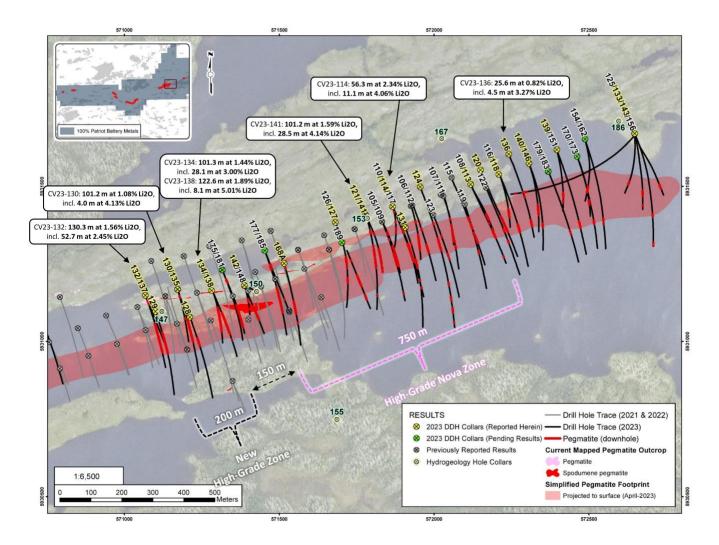


Figure 2: Drill holes completed at the CV5 Pegmatite through the 2023 winter drill program – east-central, and eastern areas

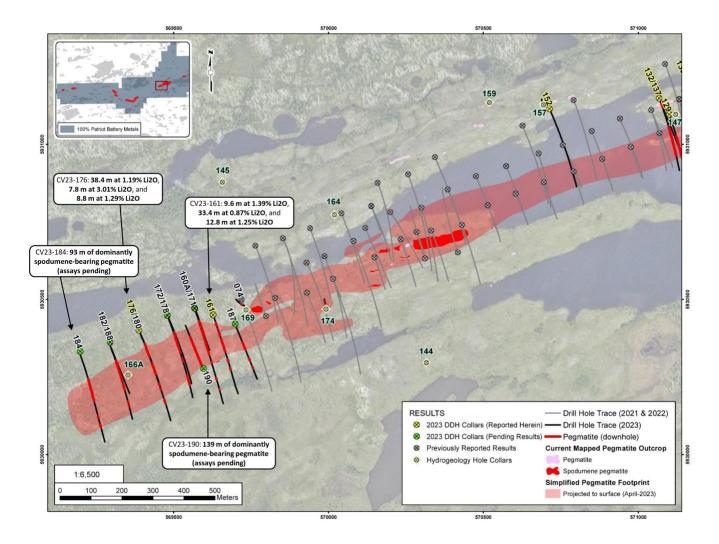


Figure 3: Drill holes completed at the CV5 Pegmatite through the 2023 winter drill program – western area

	From	То	Interval	Li₂O	Ta₂O₅			From	То	Interval	Li ₂ 0	Ta ₂ O ₅	
Hole ID	(m)	(m)	(m)	(%)	(ppm)	Comments	Hole ID	(m)	(m)	(m)	(%)	(ppm)	Comments
CV23-113	195.5	198.7	3.2	0.02	59		CV23-128	101.5	131.4	29.9	0.51	126	
	235.8	252.6	16.9	0.10	393		Incl.	125.0	130.0	5.0	1.11	184	
	255.3	269.2	13.9	1.01	197		CV23-129	102.0	199.2	97.2	0.29	100	
CV23-114	144.9	157.6	12.7	0.85	126		Incl.	161.1	173.6	12.5	1.13	146	
	251.4	307.6	56.3	2.34	162		CV23-130	145.5	246.7	101.2	1.08	152	
Incl.	269.2	301.7	32.6	3.14	195		Incl.	184.7	194.8	10.1	2.42	115	
or	288.7	299.8	11.1	4.06	287		Incl.	229.3	233.3	4.0	4.13	304	
	324.9	330.9	6.0	0.12	75		CV23-131	78.4	81.7	3.3	0.76	112	
CV23-115	198.0	214.8	16.9	1.34	139	Previously reported		157.4	165.8	8.4	1.48	135	
0120 220	230.6	253.1	22.6	2.13	204	reviously reported		179.3	194.2	14.9	0.79	125	
Incl.	231.5	238.0	6.5	3.44	77		CV23-132	145.7	154.9	9.2	0.15	247	
Incl.	249.7	251.0	1.3	6.53	79			164.0	294.3	130.3	1.56	185	
	288.7	293.9	5.3	0.69	623		Incl.	175.6	228.4	52.7	2.45	168	
	301.3	325.1	23.8	0.90	328		Incl.	247.8	252.8	5.0	3.82	451	
CV23-116	306.8	378.8	71.9	0.78	311	Previously reported	CV23-133	542.7	546.6	3.9	0.90	65	
Incl.	307.8	331.6	23.8	1.61	321			550.4	554.4	3.9	0.42	153	
CV23-117	188.9	200.3	11.4	1.79	222	Previously reported	CV23-134	6.1	8.8	2.7	0.01	67	
	281.4	283.4	2.1	0.03	132			123.3	224.6	101.3	1.44	104	
CV23-118	241.1	272.0	30.8	0.45	981		Incl.	192.3	220.4	28.1	3.00	148	
0120 220	266.1	272.0	5.9	1.55	295		or	213.2	218.3	5.2	4.69	320	
CV23-119	136.8	139.7	2.9	1.39	148	Previously reported	CV23-135	46.0	55.0	9.0	0.15	66	
0120 225	225.6	231.8	6.1	1.09	71	rienously reported	CV23-136	325.6	351.2	25.6	0.82	90	
CV23-120	239.9	242.2	2.3	0.08	364		Incl.	331.0	335.5	4.5	3.27	108	
CV25 120	245.2	320.4	75.2		305					29.9 ⁽³⁾			
CV22 121				0.38			CV23-137	46.2	76.1		0.39	183 287	
CV23-121	104.3	112.4	8.2	0.56	115		Incl.	47.0	50.9	3.9 3.2	1.67		
	175.7	179.0	3.3	0.02	171		CV23-138	4.0	7.1	3.2 122.6 ⁽³⁾	0.01	67	
	191.5	225.3	33.9	1.98	290		la al	126.0	248.5		1.89	175	
	238.0 245.2	240.3 277.6	2.3 32.4	1.03 2.42	164 107		Incl.	157.1 194.7	239.1 202.8	82.0 8.1	2.58 5.01	207 274	
CV22 122						Dura da calendar da ante al	or						
CV23-122	199.8	203.2	3.4	0.03	142 67	Previously reported	or	228.8	239.1	10.2	4.08	344	
CV22 122	251.2	260.9 107.2	9.7 3.2	2.00	159	Dura da calendar da ante al	CV/22 120	265.3	273.0	7.7	0.45	137 182	
CV23-123	104.0 190.9	201.3	5.2 10.4	1.34 1.09	139	Previously reported	CV23-139	390.1 401.4	429.6 405.7	39.5	0.42	269	
CV23-124	190.9	184.0	10.4 6.5	1.09	92		Incl.	401.4	405.7	4.3 2.5	1.07	79	
CV23-124	255.8	302.2	6.5 46.4	1.20 1.19	92 179			463.8	466.4	2.5	0.08	50	
Incl.	255.8	276.0	46.4	2.04	179		CV23-140	334.8	339.6	4.8	0.08	41	
11101.	304.6	309.5	4.9	0.39	214		CV23-140	344.6	378.1	4.o 33.5	0.17	312	
	467.1	469.7	2.5	0.05	60			389.1	400.2	55.5 11.1	0.28	171	
	523.8	528.5	4.7	0.03	59			402.6	406.6	4.0	0.40	115	
	577.1	588.3	4.7	0.75	101		CV23-141	125.6	133.0	7.4	1.33	115	
CV/22 12F	450.6	480.4	29.8	0.07	101	Proviously reported	CV23-141	240.3	341.5	101.2	1.55 1.59	246	
CV23-125 CV23-126					101	Previously reported	Incl.	240.3	277.7	28.5	4.14	246	
	No pegma		1		177	Previously reported							
CV23-127	125.7 239.5	128.5 283.0	2.8 43.5	0.48 1.80	238		or	260.4 362.0	269.2	8.8 16.2	5.20 1.37	303 140	
Incl								502.0	378.2	10.2	1.57	140	
Incl.	255.4	264.7	9.3 24.0 ⁽³⁾	3.61	190								
1	372.9	396.9		2.04	97								
Incl.	383.1	388.6	5.5	3.16	130								

Table 1: Mineralized intercept summary for drill holes reported herein from the 2023 winter program

Hole ID	From (m)	To (m)	Interval (m)	Li₂O (%)	Ta₂O₅ (ppm)	Comments	Hole ID	From (m)	To (m)	Interval (m)	Li₂O (%)	Ta₂O₅ (ppm)	Comments
CV23-142	169.7	193.1	23.4	0.67	152		CV23-169	169.7	173.1	3.4	0.01	135	Hydrogeology hole
Incl.	170.7	178.3	7.6	0.99	122		CV23-170	Assays p	ending				
	289.6	294.4	4.8	1.50	99		CV23-171	Assays pending					
CV23-143	392.7	397.7	5.0	0.07	108		CV23-172	Assays p	ending				
CV23-144	No pegma	tite inters	ected			Hydrogeology hole	CV23-173	Assays p	ending				
CV23-145	No pegma	tite inters	ected			Hydrogeology hole	CV23-174	Assays p	ending				Hydrogeology hole
CV23-146	297.5	301.0	3.5	0.37	185		CV23-175	Assays p	ending				
	306.0	312.1	6.1	0.43	108		CV23-176	90.2	128.6	38.4	1.19	148	
CV23-147	No pegma	tite inters	ected			Hydrogeology hole	Incl.	115.9	124.2	8.3	2.07	141	
CV23-148	Assays pe	nding						164.0	171.7	7.8	3.01	143	
CV23-149	n/a					Infrastructure hole		178.1	186.9	8.8	1.29	175	
CV23-150	35.8	38.7	2.9	0.18	180	Hydrogeology hole		197.6	210.0	12.4	0.71	193	
CV23-151	Assays pe	nding						341.9	344.1	2.1	0.00	0	
CV23-152	No pegma	tite inters	ected				CV23-177	Assays p	ending				
CV23-153	No pegmatite intersected				Hydrogeology hole	CV23-178	Assays p	ending					
CV23-154	Assays pending						CV23-179	Assays p					
CV23-155	No pegmatite intersected					Hydrogeology hole	CV23-180	Assays p	ending				
CV23-156	Assays pending				CV23-181	Assays p	ending						
CV23-157	No pegma	tite inters	ected			Hydrogeology hole	CV23-182	Assays p	ending				
CV23-158	n/a					Infrastructure hole	CV23-183	Assays p	ending				
CV23-159	No pegma	tite inters	ected			Hydrogeology hole	CV23-184	Assays pending					
CV23-160	No pegma	tite inters	ected			Hole lost	CV23-185	Assays pending					
CV23-160A	Assays pe	nding					CV23-186	No pegmatite intersected					Hydrogeology hole
CV23-161	37.3	42.4	5.1	1.67	956		CV23-187	Assays pending					
	44.3	46.8	2.6	0.07	887		CV23-188	Assays p	ending				
	86.5	96.1	9.6	1.39	158		CV23-189	Assays p	ending				
	115.8	149.2	33.4	0.87	97		CV23-190	Assays p	ending				
	153.6	166.4	12.8	1.25	112		(1) All interv	als are co	re length d	and preser	nted for a	all pegm	atite intervals >2
	207.4	215.6	8.2	0.13	93		m. True widt	th of interv	vals is not	confirmea	l. Geolog	jical mod	elling is ongoing;
	247.3	250.5	3.3	0.44	111		(2) Collared	in pegmat	ite; (3) Inc	ludes min	or interv	als of no	n-pegmatite units
CV23-162	Assays pe	nding					(typically <3	m); (4) 'H	ydrogeolo	gy holes' a	and 'infr	astructu	re holes' completed
CV23-163	n/a					Infrastructure hole			ological m	odel and p	roposed	infrastru	icture layout for
CV23-164	No pegma		ected			Hydrogeology hole	Project, resp	ectively.					
CV23-165	Assays pe	5											
CV23-166	Not sampl					Hydrogeology hole							
CV23-166A	Assays pe			CV23-166		Hydrogeology hole							
CV23-167	No pegma					Hydrogeology hole							
CV23-168	No pegmatite intersected					Hole lost							
CV23-168A	182.0	239.7	57.7	1.46	184								

Incl. 200.7 214.0 13.3 2.65

220

258 77 263.04m BX60 - CV23-411259 263.04 263 .04 - 267.28 264 1 BX 61 CV 23 - 14 267.28 CV141-267.28 268 1 Bx 62 CV25-141 > 271.68m 26

Figure 4: Spodumene pegmatite in drill hole CV23-141 – 8.8 m at 5.20% Li_2O (red box), including 1.0 m at 6.74% Li_2O (blue box)

192.24 -> 196.48m 130 # 46 194.01 196 CV 1.15 38 # A7 196.48-> 200.74 111 200.01 200 200.74 208.74 -> 205.16 đ

Figure 5: Spodumene pegmatite in drill hole CV23-138 – 8.1 m at 5.01% Li₂O (red box)

Hole ID	From (m)	To (m)	Interval (m)	Comments	Hole ID	From (m)	To (m)	Interval (m)	Comments
CV23-105	96.65	100.68	4.0		CV23-124	177.5	184.0	6.5	
	104.0	114.7	10.7			255.8	302.2	46.4	
	222.7	306.4	83.7			304.6	309.5	4.9	
	310.2	321.7	11.5			467.1	469.7	2.5	
	338.0	357.2	19.2			523.8	528.5	4.7	
	366.4	386.7	20.3			577.1	588.3	11.2	
CV23-106	155.2	161.0	5.8		CV23-125	450.6	480.4	29.8	
	274.1	317.2	43.1		CV23-126	No pegmatite	intersected		Hole lost
	317.8	406.3	88.5		CV23-127	125.7	128.5	2.8	
CV23-107	195.0	198.4	3.4			239.5	283.0	43.5	
	293.2	358.6	65.4			372.9	379.0	6.1	
	378.0	380.5	2.6			380.2	396.9	16.7	
CV23-108	294.7	348.6	54.0		CV23-128	101.5	131.4	29.9	
CV23-109	91.9	94.5	2.6		CV23-129	102.0	199.2	97.2	
	164.5	224.6	60.1		CV23-130	145.5	246.7	101.2	
CV23-110	125.4	130.9	5.5		CV23-131	78.4	81.7	3.3	
	184.4	269.4	85.0			157.4	165.8	8.4	
	390.1	392.4	2.4			179.3	194.2	14.9	
CV23-111	156.1	159.1	3.1		CV23-132	145.7	154.9	9.2	
	227.7	235.7	8.0			164.0	294.3	130.3	
	253.4	262.0	8.6		CV23-133	542.7	546.6	3.9	
CV23-112	125.9	131.2	5.2			550.4	554.4	3.9	
	205.7	239.4	33.7		CV23-134	6.1	8.8	2.7	
CV23-113	195.5	198.7	3.2			123.3	224.6	101.3	
	235.8	252.6	16.9		CV23-135	46.0	55.0	9.0	
	255.3	269.2	13.9		CV23-136	325.6	351.2	25.6	
CV23-114	144.9	157.6	12.7		CV23-137	46.2	70.8	24.6	
	251.4	307.6	56.3			71.5	76.1	4.6	
	324.9	330.9	6.0		CV23-138	4.0	7.1	3.2	
CV23-115	198.0	214.8	16.9			126.0	213.2	87.2	
	230.6	253.1	22.6			215.2	248.5	33.3	
	288.7	293.9	5.3			265.3	273.0	7.7	
	301.3	325.1	23.8		CV23-139	390.1	429.6	39.5	
CV23-116	306.8	378.8	71.9			463.8	466.4	2.5	
CV23-117	188.9	200.3	11.4			474.3	476.3	2.0	
	281.4	283.4	2.1		CV23-140	334.8	339.6	4.8	
CV23-118	241.1	272.0	30.8			344.6	378.1	33.5	
CV23-119	136.8	139.7	2.9			389.1	400.2	11.1	
	225.6	231.8	6.1			402.6	406.6	4.0	
CV23-120	239.9	242.2	2.3		CV23-141	125.6	133.0	7.4	
	245.2	320.4	75.2			240.3	341.5	101.2	
CV23-121	104.3	112.4	8.2			362.0	378.2	16.2	
	175.7	179.0	3.3		CV23-142	169.7	193.1	23.4	
	191.5	225.3	33.9			289.6	294.4	4.8	
	238.0	240.3	2.3		CV23-143	392.7	397.7	5.0	
	245.2	277.6	32.4		CV23-144	No pegmatite	intersected		Hydrogeology hole
CV23-122	199.8	203.2	3.4		CV23-145	No pegmatite	intersected		Hydrogeology hole
Ī	251.2	260.9	9.7		CV23-146	297.5	301.0	3.5	
CV23-123	104.0	107.2	3.2			306.0	312.1	6.1	
Ī	190.9	201.3	10.4						

Table 2: All pegmatite intersections >2 m for holes completed during the 2023 winter drill program

Hole ID	From (m)	To (m)	Interval (m)	Comments	Hole ID	From (m)	To (m)	Interval (m)	Comments
CV23-147	No pegmatite in	ntersected		Hydrogeology hole	CV23-173	378.5	415.9	37.4	
CV23-148	137.3	232.6	95.3		CV23-174	149.4	158.2	8.7	Hydrogeology hole
CV23-149	n/a			Infrastructure hole		213.5	217.5	4.1	
CV23-150	35.8	38.7	2.9	Hydrogeology hole		221.5	265.8	44.2	
CV23-151	336.8	355.0	18.2			370.6	373.8	3.2	
	360.7	364.7	4.0		CV23-175	63.9	66.1	2.2	
CV23-152	No pegmatite in	ntersected				69.4	74.2	4.8	
CV23-153	No pegmatite in	ntersected		Hydrogeology hole	CV23-176	90.2	128.6	38.4	
CV23-154	430.2	480.1	49.9			164.0	171.7	7.8	
CV23-155	No pegmatite in	ntersected		Hydrogeology hole		178.1	186.9	8.8	
CV23-156	449.4	476.9	27.5			197.6	210.0	12.4	
CV23-157	No pegmatite ii	ntersected		Hydrogeology hole		341.9	344.1	2.1	
CV23-158	n/a			Infrastructure hole	CV23-177	79.3	91.7	12.4	
CV23-159	No pegmatite in	ntersected		Hydrogeology hole		175.0	290.3	115.3	
CV23-160	No pegmatite in	ntersected		Hole lost	CV23-178	132.6	136.3	3.6	
CV23-160A	61.9	189.5	127.7		CV23-179	291.7	295.1	3.4	
	197.1	200.2	3.1		CV23-180	92.0	98.8	6.8	
	251.6	253.8	2.2			102.2	105.8	3.5	
	326.8	330.8	4.0		CV23-181	60.3	68.2	7.9	
CV23-161	37.3	42.4	5.1			195.5	303.5	108.0	
	44.3	46.8	2.6			312.1	321.5	9.3	
	86.5	96.1	9.6		CV23-182	97.0	189.6	92.6	
	115.8	149.2	33.4			216.7	227.0	10.3	
	153.6	166.4	12.8		CV23-183	320.0	364.6	44.7	
	207.4	215.6	8.2		CV23-184	126.9	220.1	93.3	
	247.3	250.5	3.3			220.9	228.3	7.4	
CV23-162	358.3	365.0	6.7			301.4	303.6	2.2	
CV23-163	n/a			Infrastructure hole		341.8	349.7	7.9	
CV23-164	No pegmatite in	ntersected		Hydrogeology hole	CV23-185	96.8	106.8	9.9	
CV23-165	414.5	450.5	36.0			338.0	340.7	2.7	
CV23-166	19.3	25.0	5.7 ⁽²⁾	Hydrogeology hole	CV23-186	No pegmatite	intersected		Hydrogeology hole
CV23-166A	19.1	25.2	6.2 ⁽²⁾	Hydrogeology hole	CV23-187	5.0	12.0	7.0 ⁽²⁾	
CV23-167	No pegmatite in	ntersected		Hydrogeology hole		96.4	110.5	14.1	
CV23-168	No pegmatite in	ntersected		Hole lost		120.2	125.3	5.1	
CV23-168A	182.0	239.7	57.7			171.2	181.0	9.8	
CV23-169	169.7	173.1	3.4	Hydrogeology hole		213.0	218.3	5.4	
CV23-170	310.8	319.6	8.8		CV23-188	No >2 m pegm	atite intersect	ions	
CV23-171	125.6	129.9	4.3		CV23-189	47.4	50.9	3.6	
CV23-172	85.7	89.2	3.4			121.9	174.8	52.9	
	106.3	133.3	27.0			216.3	239.8	23.5	
	134.9	169.5	34.5		CV23-190	25.7	164.9	139.2	
	170.1	174.0	3.9		(1) All intervals	are core length.	rue width of inte	ervals is not confirmed	l. Geological modelling is
	185.4	188.0	2.5					logy holes' and 'infra	
	312.7	319.1	6.4			upport a hydroge	ological model a	nd proposed infrastru	icture layout for Project,
	327.2	342.8	15.7		respectively.				

Hole ID	Substrate	Total Depth (m)	Azimuth (°)	Dip (°)	Easting	Northing	Elevation (m)	Core Size	Cluster	Comments
CV23-105	Land	452.0	158	-65	571832.1	5931386.7	376.5	NQ	CV5	
CV23-106	Land	491.0	158	-65	571929.4	5931439.1	378.9	NQ	CV5	
CV23-107	Land	428.2	158	-65	572029.5	5931469.1	377.9	NQ	CV5	
CV23-108	Land	461.0	158	-65	572118.4	5931506.1	374.0	NQ	CV5	
CV23-109	Land	392.1	158	-45	571832.3	5931386.2	376.5	NQ	CV5	
CV23-110	Land	431.0	158	-45	571866.1	5931434.5	375.7	NQ	CV5	
CV23-111	Land	356.0	158	-45	572021.3	5931473.5	376.0	NQ	CV5	
CV23-112	Land	377.1	158	-45	571925.1	5931436.2	379.4	NQ	CV5	
CV23-113	Land	389.0	158	-45	572118.5	5931505.7	374.2	NQ	CV5	
CV23-114	Land	500.1	158	-55	571865.9	5931434.7	375.7	NQ	CV5	
CV23-115	Land	431.1	158	-45	572057.1	5931528.6	371.6	NQ	CV5	
CV23-116	Land	476.0	158	-65	572208.5	5931538.3	373.3	NQ	CV5	
CV23-117	Land	566.1	158	-75	571865.9	5931434.7	375.7	NQ	CV5	
CV23-118	Land	437.1	158	-45	572208.5	5931538.3	373.3	NQ	CV5	
CV23-119	Land	389.0	158	-45	572099.4	5931442.2	373.8	NQ	CV5	
CV23-120	Land	443.0	158	-45	572150.2	5931552.7	376.5	NQ	CV5	
CV23-121	Land	454.7	158	-48	571779.2	5931409.1	376.0	NQ	CV5	
CV23-122	Land	403.9	158	-45	572167.6	5931496.0	375.3	NQ	CV5	
CV23-123	Land	386.0	158	-45	571997.7	5931407.9	374.2	NQ	CV5	
CV23-124	Land	653.0	158	-45	571955.3	5931497.9	374.4	NQ	CV5	
CV23-125	Land	545.0	158	-65	572647.7	5931670.5	382.4	NQ	CV5	
CV23-126	Land	83.1	158	-47	571680.9	5931383.6	375.3	NQ	CV5	Hole lost at shallow depth
CV23-127	Land	548.0	158	-59	571680.9	5931383.8	375.3	NQ	CV5	
CV23-128	Land	362.0	158	-45	571212.0	5931077.7	376.5	NQ	CV5	
CV23-129	Land	380.0	158	-45	571100.3	5931096.5	375.6	NQ	CV5	
CV23-130	Land	377.0	158	-45	571171.8	5931167.6	374.9	NQ	CV5	
CV23-131	lce	454.9	158	-45	571907.3	5931366.9	373.2	NQ	CV5	
CV23-132	Land	374.0	158	-49	571068.0	5931148.3	374.7	NQ	CV5	
CV23-133	Land	604.8	220	-45	572646.6	5931668.7	382.6	NQ	CV5	
CV23-134	Land	331.0	158	-45	571281.9	5931163.8	379.2	NQ	CV5	
CV23-135	Land	360.6	158	-60	571171.6	5931167.9	374.9	NQ	CV5	
CV23-136	Ice	403.9	158	-45	572240.8	5931603.3	373.1	NQ	CV5	
CV23-137	Land	389.0	158	-65	571067.9	5931148.6	374.7	NQ	CV5	
CV23-138	Land	359.1	158	-60	571281.9	5931163.8	379.2	NQ	CV5	
CV23-139	Ice	565.9	158	-65	572396.1	5931617.8	372.9	NQ	CV5	
CV23-140	lce	545.3	158	-65	572306.4	5931573.2	373.0	NQ	CV5	
CV23-141	Land	400.9	158	-65	571781.4	5931403.7	377.9	NQ	CV5	
CV23-142	Land	359.0	158	-73	571387.3	5931180.7	377.2	NQ	CV5	
CV23-143	Land	530.2	158	-45	572647.9	5931670.0	382.4	NQ	CV5	
CV23-144	Land	25.7	0	-90	570316.3	5930295.9	380.0	HQ	CV5	Hydrogeology hole
CV23-145	Land	53.0	0	-90	569657.7	5930878.2	372.7	HQ	CV5	Hydrogeology hole
CV23-146	lce	416.0	158	-45	572306.6	5931572.9	373.2	NQ	CV5	
CV23-147	Land	185.0	0	-90	571121.4	5931096.9	376.0	NQ	CV5	Hydrogeology hole
CV23-148	Land	332.0	158	-58	571387.4	5931180.3	377.3	NQ	CV5	
CV23-149	Land	199.7	0	-90	572122.5	5944352.1	350.9	HQ	n/a	Infrastructure hole
CV23-150	Land	302.1	0	-90	571426.9	5931160.9	376.7	NQ	CV5	Hydrogeology hole
CV23-151	lce	486.0	158	-45	572396.1	5931617.8	372.9	NQ	CV5	
CV23-152	Land	398.0	158	-47	570714.1	5931114.0	378.8	NQ	CV5	
CV23-153	Land	300.1	0	-90	571785.2	5931397.3	378.6	NQ	CV5	Hydrogeology hole
CV23-154	lce	574.9	158	-65	572487.3	5931652.3	372.9	NQ	CV5	
CV23-155	Land	24.9	0	-90	571686.6	5930748.6	379.8	HQ	CV5	Hydrogeology hole

Table 3: 2023 winter drill hole attributes

Hole ID	Substrate	Total Depth (m)	Azimuth (°)	Dip (°)	Easting	Northing	Elevation (m)	Core Size	Cluster	Comments
CV23-156	Land	581.3	176	-67	572647.4	5931670.4	382.6	NQ	CV5	
CV23-157	Land	278.1	0	-90	570694.6	5931128.2	379.0	NQ	CV5	Hydrogeology hole
CV23-158	Land	203.0	0	-90	572137.1	5944484.5	342.3	HQ	n/a	Infrastructure hole
CV23-159	Land	50.0	0	-90	570520.0	5931135.3	375.6	HQ	CV5	Hydrogeology hole
CV23-160	Land	14.0	158	-45	569567.5	5930470.9	380.4	NQ	CV5	Hole lost at shallow depth
CV23-160A	Land	443.0	158	-45	569567.5	5930470.9	380.4	NQ	CV5	
CV23-161	Land	360.0	158	-45	569627.6	5930449.9	384.8	NQ	CV5	
CV23-162	Ice	482.0	158	-45	572487.3	5931652.3	372.0	NQ	CV5	
CV23-163	Land	212.1	0	-90	571920.4	5944521.2	338.8	HQ	n/a	Infrastructure hole
CV23-164	Land	200.0	0	-90	570020.1	5930773.5	378.1	NQ	CV5	Hydrogeology hole
CV23-165	Land	555.1	165	-60	572647.7	5931669.8	382.4	NQ	CV5	
CV23-166	Land	43.3	0	-90	569353.0	5930256.3	389.1	NQ	CV5	Hydrogeology hole
CV23-166A	Land	50.0	0	-90	569353.0	5930256.3	389.1	НQ	CV5	Hydrogeology hole
CV23-167	Land	25.5	0	-90	572024.6	5931654.1	374.9	НQ	CV5	Hydrogeology hole
CV23-168	lce	18.2	158	-47	571515.8	5931250.9	373.0	NQ	CV5	Hole lost at shallow depth
CV23-168A	lce	388.1	158	-47	571515.8	5931250.9	373.0	NQ	CV5	
CV23-169	Land	302.0	0	-90	569733.9	5930466.5	379.2	NQ	CV5	Hydrogeology hole
CV23-170	lce	431.6	158	-45	572461.9	5931596.5	373.0	NQ	CV5	
CV23-171	Land	373.4	158	-63	569568.8	5930470.2	380.1	NQ	CV5	
CV23-172	Land	404.0	158	-45	569479.9	5930448.2	384.1	NQ	CV5	
CV23-173	lce	516.7	158	-65	572461.9	5931596.5	373.0	NQ	CV5	
CV23-174	Land	421.7	0	-90	569992.0	5930469.4	381.0	NQ	CV5	Hydrogeology hole
CV23-175	lce	458.0	158	-57	571316.1	5931230.2	372.9	NQ	CV5	
CV23-176	Land	434.0	158	-45	569388.0	5930399.5	386.2	NQ	CV5	
CV23-177	lce	394.7	158	-45	571453.4	5931292.5	373.0	NQ	CV5	
CV23-178	Land	473.2	158	-62	569479.8	5930448.6	384.1	NQ	CV5	
CV23-179	lce	437.0	158	-45	572368.8	5931547.6	372.9	NQ	CV5	
CV23-180	Land	379.6	150	-60	569387.8	5930400.0	386.0	NQ	CV5	
CV23-181	lce	354.0	158	-46	571316.2	5931230.0	372.9	NQ	CV5	
CV23-182	Land	369.0	158	-45	569295.1	5930361.6	389.4	NQ	CV5	
CV23-183	lce	477.1	158	-65	572368.7	5931548.1	372.8	NQ	CV5	
CV23-184	Land	417.4	158	-45	569198.6	5930332.0	392.7	NQ	CV5	
CV23-185	lce	425.0	158	-60	571453.3	5931292.7	372.9	NQ	CV5	
CV23-186	Land	49.6	0	-90	572596.5	5931710.3	374.2	HQ	CV5	Hydrogeology hole
CV23-187	Land	287.0	158	-45	569698.8	5930420.6	381.0	NQ	CV5	
CV23-188	Land	362.0	158	-60	569294.9	5930361.9	389.3	NQ	CV5	
CV23-189	Land	287.0	158	-45	571702.0	5931318.4	380.1	NQ	CV5	
CV23-190	Land	221.1	338	-45		5930277.1	382.2	NQ	CV5	

(1) Coordinate system NAD83 / UTM zone 18N; (2) All drill holes are diamond drill; (3) Azimuths and dips presented are those 'planned' and may vary off collar/downhole; (4) 'Hydrogeology holes' and 'infrastructure holes' completed to support a hydrogeological model and proposed infrastructure layout for Project, respectively.

Quality Assurance / Quality Control (QAQC)

A Quality Assurance / Quality Control protocol following industry best practices was incorporated into the program and included systematic insertion of quartz blanks and certified reference materials into sample batches, as well as collection of quarter-core duplicates, at a rate of approximately 5%. Additionally, analysis of pulp-split and coarse-split sample duplicates were completed to assess analytical precision at different stages of the laboratory preparation process, and external (secondary) laboratory pulp-split duplicates were prepared at the primary lab for subsequent check analysis and validation.

All core samples collected were shipped to SGS Canada's laboratory in Val-d'Or, QC, for standard sample preparation (code PRP89) which includes drying at 105°C, crush to 75% passing 2 mm, riffle split 250 g, and pulverize 85% passing 75 microns. The pulps were shipped by air to SGS Canada's laboratory in Burnaby, BC, where the samples were homogenized and subsequently analyzed for multi-element (including Li and Ta) using sodium peroxide fusion with ICP-AES/MS finish (codes GE_ICP91A50 and GE_IMS91A50).

About the CV Lithium Trend

The CV Lithium Trend is an emerging spodumene pegmatite district discovered by the Company in 2017 and spans more than 25-km across the Corvette Property. The core area includes an approximate 3.7 km long spodumene pegmatite (the 'CV5 Pegmatite') and multiple proximal secondary spodumene pegmatite lenses.

To date, six (6) distinct clusters of lithium pegmatite have been discovered across the Corvette Property – CV5 Pegmatite and associated lenses, CV4, CV8-12, CV9, CV10, and the recently discovered CV13. Given the proximity of some pegmatite outcrops to each other, as well as the shallow till cover in the area, it is probable that some of the outcrops may reflect a discontinuous surface exposure of a single, larger pegmatite 'outcrop' subsurface. Further, the high number of well-mineralized pegmatites along the trend indicate a strong potential for a series of relatively closely spaced/stacked, sub-parallel, and sizable spodumene-bearing pegmatite bodies, with significant lateral and depth extent, to be present.

Qualified/Competent Person

The information in this news release that relates to exploration results for the Corvette Property is based on, and fairly represents, information compiled by Mr. Darren L. Smith, M.Sc., P.Geo., who is a Qualified Person as defined by National Instrument 43-101, and member in good standing with the Ordre des Géologues du Québec (Geologist Permit number 1968), and with the Association of Professional Engineers and Geoscientists of Alberta (member number 87868). Mr. Smith has reviewed and approved the technical information in this news release.

Mr. Smith is Vice President of Exploration for Patriot Battery Metals Inc. and a Senior Geologist and Project Manager with Dahrouge Geological Consulting Ltd. Mr. Smith holds common shares and options in the Company.

Mr. Smith has sufficient experience, which is relevant to the style of mineralization, type of deposit under consideration, and to the activities being undertaken to qualify as a Competent Person as described by the JORC Code, 2012. Mr. Smith consents to the inclusion in this news release of the matters based on his information in the form and context in which it appears.

About Patriot Battery Metals Inc.

Patriot Battery Metals Inc. is a hard-rock lithium exploration company focused on advancing its district-scale 100% owned Corvette Property located in the Eeyou Istchee James Bay region of Quebec, Canada. The Corvette Property is one of the largest and highest-grade hard rock lithium projects being explored, with over 50 kilometres of strike length over a 214 square kilometre land package and over 70 lithium bearing pegmatite outcrops identified to date.

The Corvette Property is situated proximal to the all-weather Trans Taiga Road and Hydro-Québec power line infrastructure in the Eeyou Istchee James Bay region of Quebec. The Property hosts significant lithium potential highlighted by the CV5 Pegmatite, which has been traced by drilling over a strike length of at least 3.7 km with spodumene pegmatite encountered as deep as 425 m vertical depth.

For further information, please contact us at <u>info@patriotbatterymetals.com</u> or by calling +1 (604) 279-8709,or visit <u>www.patriotbatterymetals.com</u>. Please also refer to the Company's continuous disclosure filings, available under its profile at <u>www.sedar.com</u> and <u>www.asx.com.au</u>, for available exploration data.

This news release has been approved by the Board of Directors,

"BLAIR WAY"

Blair Way, President, CEO, & Director

Disclaimer for Forward-Looking Information

This news release contains forward-looking statements and other statements that are not historical facts. Forward-looking statements are often identified by terms such as "will", "may", "should", "anticipate", "expects" and similar expressions. All statements other than statements of historical fact, included in this news release are forward-looking statements that involve risks and uncertainties, including without limitation statements with respect to potential continuity of pegmatite bodies, and mineral resource estimate preparation. There can be no assurance that such statements will prove to be accurate and actual results and future events could differ materially from those anticipated in such statements. Important factors that could cause actual results to differ materially from the Company's expectations include the results of further exploration and testing, and other risks detailed from time to time in the filings made by the Company with securities regulators, available at www.sedar.com and www.asx.com.au. The reader is cautioned that assumptions used in the preparation of any forward-looking information may prove to be incorrect. Events or circumstances may cause actual results to differ materially from those predicted, as a result of numerous known and unknown risks, uncertainties, and other factors, many of which are beyond the control of the Company. The reader is cautioned not to place undue reliance on any forward-looking information. Such information, although considered reasonable by management at the time of preparation, may prove to be incorrect and actual results may differ materially from those anticipated. Forward-looking statements contained in this news release are expressly qualified by this cautionary statement. The forwardlooking statements contained in this news release are made as of the date of this news release and the Company will update or revise publicly any of the included forward-looking statements as expressly required by applicable law.

No securities regulatory authority or stock exchange has reviewed nor accepts responsibility for the adequacy or accuracy of the content of this news release.

Appendix 1 – JORC Code 2012 Table 1 information required by ASX Listing Rule 5.7.1

Section 1 – Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Core sampling protocols met or exceeded industry standard practices. Core Sampling is guided by lithology as determined during geological logging (i.e., by a geologist). All pegmatite intervals are sampled in their entirety (half-core), regardless if spodumene mineralization is noted or not (in order to ensure an unbiased sampling approach) in addition to ~1-3 m of sampling into the adjacent wallrock (dependent on pegmatite interval length) to "bookend" the sampled pegmatite. The minimum individual sample length is 0.3 m and the maximum sample length is 3.0 m. Targeted individual pegmatite sample lengths are 1.0 m. All drill core is oriented to maximum foliation prior to logging and sampling and is cut with a core saw into half-core pieces, with one half-core collected for assay, and the other half-core remaining in the box for reference. Core samples collected were shipped to SGS Canada's laboratory in Val-d'Or, QC, for standard sample preparation (code PRP89) which includes drying at 105°C, crush to 75% passing 2 mm, riffle split 250 g, and pulverize 85% passing 75 microns. The pulps were shipped by air to SGS Canada's laboratory in Burnaby, BC, where the samples were homogenized and subsequently analyzed for multi-element (including Li and Ta) using sodium peroxide fusion with ICP-AES/MS finish (codes GE_ICP91A50 and GE_IMS91A50).
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 NQ or HQ size core diamond drilling was completed for all holes. Core is not oriented; however, downhole OTV-ATV surveys have been completed on some prior holes to assess overall structure.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 All drill core was geotechnically logged following industry standard practices, and includes total core recovery, fracture recording, ISRM rock strength and weathering, and RQD. Core recovery is very good and typically exceeds 90%.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Upon receipt at the core shack, all drill core received is pieced together, oriented to maximum foliation, metre marked, geotechnically logged (including structure), alteration logged, geologically logged, and sample logged on an individual sample basis. Core box photos are also collected of all core drilled, regardless of perceived mineralization. Specific gravity measurements are also collected at systematic intervals for all drill core. These logging practices meet or exceed current industry standard practices and are of appropriate detail to support a mineral resource estimation. The logging is qualitative by nature, and includes estimates of spodumene grain size, inclusions, and model mineral estimates.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Drill core sampling follows industry best practices. Drill core was saw cut with half-core sent for geochemical analysis and half-core remaining in the box for reference. The same side of the core was sampled to maintain representativeness. Additionally, several intervals over several holes have had quarter-core samples collected for mineral processing programs, thus leaving only a quarter-core in the box for reference over these intervals. Sample sizes are appropriate for the material being assayed. A Quality Assurance / Quality Control protocol following industry best practices was incorporated into the program and included systematic insertion of quartz blanks and certified reference materials into sample batches, as well as collection of quarter-core duplicates, at a rate of approximately 5%. Additionally, analysis of pulp-split and course- split sample duplicates were completed to assess analytical precision at different stages of the laboratory preparation process, and external (secondary) laboratory pulp-split duplicates were prepared at the primary lab for subsequent check analysis and validation. All protocols employed are considered appropriate for the sample type and nature of mineralization and are considered the optimal approach for maintaining representativeness in sampling.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the 	 Core samples collected were shipped to SGS Canada's laboratory in Val-d'Or, QC, for standard sample preparation (code PRP89) which includes drying at 105°C, crush to 75% passing 2 mm, riffle split 250 g, and pulverize 85% passing 75 microns. The pulps were shipped by air to SGS Canada's laboratory in Burnaby, BC, where the

Criteria	JORC Code explanation	Commentary
	 analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 samples were homogenized and subsequently analyzed for multi-element (including Li and Ta) using sodium peroxide fusion with ICP-AES/MS finish (codes GE_ICP91A50 and GE_IMS91A50). The assay techniques are considered appropriate for the nature and type of mineralization present, and result in a total digestion and assay for the elements of interest. The Company relies on both its internal QAQC protocols (systematic quarter-core duplicates, blanks, certified reference materials, and external checks), as well as the laboratory's internal QAQC. For assay results disclosed, samples have passed QAQC review.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Intervals are reviewed and compiled by the VP Exploration and Project Managers prior to disclosure, including a review of the Company's internal QAQC sample analytical data. No twinned holes have been completed, apart from CV23-166, which was re-collared as a different core size, as well as some holes that were lost prior to hitting their target depth, which were re-collared a few metres adjacent. Data capture utilizes MX Deposit software whereby core logging data is entered directly into the software for storage, including direct import of laboratory analytical certificates as they are received. The Company employs various on-site and post QAQC protocols to ensure data integrity and accuracy. Adjustments to data include reporting lithium and tantalum in their oxide forms, as it is reported in elemental form in the assay certificates. Formulas used are Li2O = Li x 2.1527, and Ta2O5 = Ta x 1.2211
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Each drill hole's collar has been surveyed with a handheld GPS or RTK (Trimble Zephyr 3). The coordinate system used is UTM NAD83 Zone 18. The Company completed a property-wide LiDAR and orthophoto survey in August 2022, which provides high-quality topographic control. The quality and accuracy of the topographic controls are considered adequate for advanced stage exploration and development.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity 	 Drill hole spacing is dominantly at ~100 m; however, tightens to ~50 m in some places, and widens to ~150 in a small number of places. Based on the nature of the mineralization and continuity in geological modelling, it is believed

Criteria	JORC Code explanation	Commentary
	 appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 that a 100 m spacing will be sufficient to support a mineral resource estimate. Core sample lengths typically range from 0.5 to 1.5 m and average ~1 m. Sampling is continuous within all pegmatite encountered in drilling. Sample compositing has not been applied
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No sampling bias is anticipated based on structure within the mineralized body. The mineralized body is relatively undeformed and very competent, although likely has some meaningful structural control. The mineralized body is steeply dipping resulting in oblique angles of intersection with true widths varying based on drill hole angle and orientation of pegmatite at that particular intersection point. i.e. The dip of the mineralized pegmatite body has variations in a vertical sense and along strike, so the true widths are not always apparent until several holes have been drilled in any particular drill-fence.
Sample security	The measures taken to ensure sample security.	• Samples were collected by Company staff or its consultants following specific protocols governing sample collection and handling. Core samples were bagged, placed in large supersacs for added security, palleted, and shipped directly to Val-d'Or, QC, being tracked during shipment along with Chain of Custody. Upon arrival at the laboratory, the samples were cross-referenced with the shipping manifest to confirm all samples were accounted for. At the laboratory, sample bags are evaluated for tampering.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 A review of the sample procedures for the Company's 2021 fall drill program (CF21-001 to 004) and 2022 winter drill program (CV22-015 to 034) was completed by an Independent Qualified Person and deemed adequate and acceptable to industry best practices (discussed in an "NI 43- 101 Technical Report on the Corvette Property, Quebec, Canada", Issue date of June 27th, 2022.) Additionally, the Company continually reviews and evaluates its procedures in order to optimize and ensure compliance at all levels of sample data collection and handling.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria JORC	Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 The Corvette Property is comprised of 417 claims located in the James Bay Region of Quebec with all claims registered to the Company. The Property is located approximately 10-15 km south of the Trans-Taiga Road and powerline infrastructure corridor. The Company holds 100% interest in the Property subject to various royalty obligations depending on original acquisition agreements. DG Resources Management holds a 2% NSR (no buyback) on 76 claims, D.B.A. Canadian Mining House holds a 2% NSR on 50 claims (half buyback for \$2M) and Osisko Gold Royalties holds a sliding scale NSR of 1.5-3.5% on precious metals, and 2% on all other products, over 111 claims. The Property does not overlap any sensitive environmental areas or parks, or historical sites to the knowledge of the Company. There are no known hinderances to operating at the Property, apart from the goose harvesting season (April 20th to May 20th) where the communities request helicopter flying be completed. Claim expiry dates range from July 2023 to July 2025.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 No assay results from other parties are disclosed herein. The most recent independent Property review was a NI 43-101 Technical Report on the Corvette Property, Quebec, Canada", Issue date of June 27th, 2022.
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Property is situated within the Lac Guyer Greenstone Belt, considered part of the larger La Grande River Greenstone Belt and is dominated by volcanic rocks metamorphosed to amphibolite facies. The claim block is dominantly underlain by the Guyer Group (basaltic amphibolite, iron formation) and the Corvette Formation (amphibolite of intermediate to mafic volcanics). Several occurrences of ultramafic rocks (peridotite, pyroxenite, komatiite) as well as felsic volcanics (tuffs) are also mapped over areas of the Property. The basaltic amphibolite rocks that trend east-west (generally south dipping) through this region are bordered to the north by the Magin Formation (conglomerate and wacke) and to the south by an assemblage of tonalite,

Criteria	JORC Code explanation	Commentary
		 granodiorite, and diorite. Several regional-scale Proterozoic gabbroic dykes also cut through portions of the Property (Lac Spirt Dykes, Senneterre Dykes). The geologic setting is prospective for gold, silver, base metals, platinum group elements, and lithium over several different deposit styles including orogenic gold (Au), volcanogenic massive sulfide (Cu, Au, Ag), komatiite-ultramafic (Au, Ag, PGE, Ni, Cu, Co), and pegmatite (Li, Ta). Exploration of the Property has outlined three primary mineral exploration trends crossing dominantly east-west over large portions of the Property – Maven Trend (copper, gold, silver), Golden Trend (gold), and CV Trend (lithium, tantalum). Lithium mineralization at the Property is observed to occur within quartz-feldspar pegmatite (LCT Pegmatites), often exposed at surface as high relief 'whale-back' landforms. The pegmatite is often very coarse-grained and off-white in appearance, with darker sections commonly composed of mica and smoky quartz, and occasional tourmaline. The lithium pegmatites at Corvette are LCT Pegmatites. Core assays and ongoing mineralogical studies, coupled with field mineral identification and assays, indicate spodumene as the dominant lithium-bearing mineral on the Property, with no significant petalite, lepidolite, lithium-phosphate minerals, or apatite present. The pegmatites at Corvette also carry significant tantalum values with tantalite indicated to be the mineral phase.
Drill hole Informatio	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth 	 Drill hole attribute information for the drill holes with core assay data announced herein are presented in Table 3 herein. Grade over width calculations for assays of intervals of <2 m are not typically presented as they are considered insignificant.

Criteria JORC	Code explanation C	Commentary
	 hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length weighted averages were used to calculate grade over width. No specific grade cap or cut-off was used during grade width calculations. The lithium and tantalum average of the entire pegmatite interval is calculated for all pegmatite intervals over 2 m core length, as well as higher grade zones at the discretion of the geologist. Pegmatites have inconsistent mineralization by nature, resulting in most intervals having a small number of poorly mineralized samples throughout the interval included in the calculation. Non-pegmatite internal dilution is limited to typically <3 m where relevant intervals indicated where assays are reported. No metal equivalents have been reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Geological modelling is ongoing; however, current interpretation supports a large pegmatite body (CV5) of near vertical to steeply dipping orientation, flanked by several secondary pegmatite lenses. All reported widths are core length. True widths are not known and may vary widely from hole to hole based on the drill hole angle and the highly variable nature of pegmatite bodies, which tend to pinch and swell aggressively along strike and to depth. i.e. The dip of the mineralized pegmatite body has variations in a vertical sense and along strike, so the true widths are not always apparent until several holes have been drilled in any particular drill-fence.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Please refer to the figures included herein as well as those posted on the Company's website.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high 	 Please refer to the table(s) included herein as well as those posted on the Company's website. Every individual pegmatite interval that is greater

Criteria	JORC	Code	explanation	Comr	nentary
			grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.		than 2 m has been reported.
Other sub exploratio	on data		Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; bulk samples – size and method of treatment; metallurgical test results bulk density, groundwater, geotechnical and rock characteristics; potential deleteriou or contaminating substances.	• S	The Company is currently completing baseline environmental work over the CV5 Pegmatite area. No endangered flora or fauna have been documented over the Property to date, and several sites have been identified as potentially suitable for mine infrastructure. The Company has completed a bathymetric survey over the shallow glacial lake which overlies a portion of the mineralized body. The lake depth ranges from <2 m to approximately 18 m, and is typically less than 10 m over the mineralized body. The Company has completed preliminary metallurgical testing comprised of HLS and magnetic testing, which has produced 6+% Li2O spodumene concentrates at >70% recovery. A DMS test followed returning a spodumene concentrate grading 5.8% Li2O at 79% recovery. The data suggests potential for a DMS only operation to be applicable to the project. Various mandates required for advancing the Project towards economic studies have been initiated, including but not limited to, metallurgy, geomechanics, hydrogeology, hydrology, stakeholder engagement, geochemical characterization, as well as transportation and logistical studies.
Further w	rork	•	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	•	The Company intends to continue drilling the pegmatites of the Corvette Property, focused on the CV5 Pegmatite and adjacent secondary lenses. The mineralized pegmatites remain open along strike, and to depth at most locations along strike. Drilling is also anticipated to continue at the CV13 pegmatite cluster as well as other pegmatite clusters at the Property. The details of these programs are still being developed. An initial mineral resource estimate is anticipated to be completed for the CV5 Pegmatite in 2023.

